

High performance ZnO based back reflectors for thin film solar cell application

Li Qin Zhou^{1,2}, Raul Simões^{1,2}, Bárbara Gabriel^{1,2}, Qi Hua Fan³, Victor Neto^{1,2}

¹ Centre for Mechanical Technology and Automation, Department of Mechanical Engineering University of Aveiro, 3810-193 Aveiro, Portugal

² Aveiro Nanotechnology Institute, University of Aveiro, 3810-193 Aveiro, Portugal

³ Department of Electrical Engineering and Computer Science, South Dakota State University, USA e-mail: vneto@ua.pt

Dielectric thin films of high- and low-refractive index are the essential building blocks for optical coatings considering solar cells applications [1]. In order to achieve high sputtering rates and superior film quality, novel conductive ZnO:Zn composites have been developed,

which become conductive once the metal Zn reach a critical ratio, as presented in Fig. 1.

Optimized ZnO:Zn produced target have been characterized and used to sputter optical conducting films that were then studied for structural, optical and electrical properties characterization. Experiments on solar cell using ZnO:Zn sputtered thin films were also conducted.

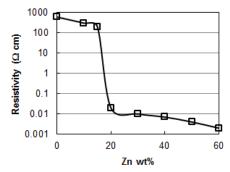


Fig.1 Resistivity versus x value for (1-x)ZnO+xZn compositions.

When conductive particles are dispersed into a non-conductive matrix and the amount of the conductive phase increases from zero up to a critical volume fraction of percolation [2], one particle contact with neighbors and form finite conductive path where the host material is non-conductive. Near the critical volume, a conductive network is formed and the resistivity of the entire composite abruptly decreases.

The critical fraction of the conductive Zn phase is ~20% in weight in the present study. SEM/EDX analysis was performed to confirm this assumption. Transmittance spectra of ZnO films prepared by RF sputtering from ZnO:Zn displayed similar transparency as other typical used optical coatings.

References

- 1. H.A. Macleod, Thin-Film Optical Filters, Third Edition, IOP Publishing, Bristol and Philadelphia (2001)
- 2. D. S. McLachlan, M. Blaszkiewicz and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).

